a) We need to find such a vector that satisfies \[ \left(\begin{array}{c} 1 \\ 2 \end{array}\right) + \left(\begin{array}{c} a \\ b \end{array}\right) = \left(\begin{array}{c} 7 \\ -3 \end{array}\right) \] It is clear to see that \( a = 6 \) and \( b = -5 \).
b) We need to find such a vector that satisfies \[ \left(\begin{array}{c} 8 \\ 5 \end{array}\right) + \left(\begin{array}{c} a \\ b \end{array}\right) = \left(\begin{array}{c} 2 \\ 0 \end{array}\right) \] It is clear to see that \( a = -6 \) and \( b = -5 \).
c) We need to find such a vector that satisfies \[ \left(\begin{array}{c} -4 \\ 1 \end{array}\right) + \left(\begin{array}{c} a \\ b \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right) \] It is clear to see that \( a = 4 \) and \( b = -1 \).
Close\[ \tan{\theta} = 2 \]
\[ 2\theta = 2\arctan{2} \]
So:
\[ \cos{2\theta} = \cos{(2\arctan{2})} = -\frac{3}{5} \]
And:
\[ \sin{2\theta} = \sin{(2\arctan{2})} = \frac{4}{5} \]
So the reflection matrix is:
\[ \mathbf{R} = \left(\begin{array}{cc} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{array}\right) \]
So the reflected point will be at:
\[ \left(\begin{array}{cc} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{array}\right)\cdot \left(\begin{array}{c} 5 \\ -2 \end{array}\right) = \left(\begin{array}{c} -\frac{23}{5} \\ \frac{14}{5} \end{array}\right) \]
CloseOur matrix \( \textbf{A} \) has a form:
\[ \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \]
We can use the fact that by linear transformation we mean:
\[ \mathbf{x}'=\mathbf{A}\mathbf{x} \]
So plugging in our values we get:
\[ \left(\begin{array}{cc} -4 \\ 7 \end{array}\right) = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \cdot \left(\begin{array}{cc} 3 \\ 1 \end{array}\right) \]
\[ \left(\begin{array}{cc} -4 \\ 7 \end{array}\right) = \left(\begin{array}{cc} 3a + b \\ 3c + d \end{array}\right) \]
We can do the same for the other point transformation:
\[ \left(\begin{array}{cc} 26 \\ 0 \end{array}\right) = \left(\begin{array}{cc} -2a + 4b \\ -2c + 4d \end{array}\right) \]
As such, we get a system of 4 equations, which we can solve either algebraically or with our GDC:
\[ -4 = 3a + b \]
\[ 7 = 3c + d \]
\[ 26 = -2a + 4b \]
\[ 0 = -2c + 4d \]
Solving this system gives:
\[ a = -3 \]
\[ b = 5 \]
\[ c = 2 \]
\[ d = 1 \]
Closea) \( \mathbf{A} = \left(\begin{array}{cc} \frac{5}{4} & 0 \\ 0 & \frac{3}{2} \end{array}\right) \)
b) First, we need to find the determinant of our matrix:
\[ \text{det} \, \mathbf{A} = \left|\begin{array}{cc} \frac{5}{4} & 0 \\ 0 & \frac{3}{2} \end{array}\right| = \frac{15}{8} \]
The area of the original circle is:
\[ \pi r^2 = 4\pi \]
So the area of the new circle is:
\[ \frac{15}{8} \cdot 4\pi = \frac{15}{2}\pi \]
c)
Horizontally, the new radius is:
\[ 2 \cdot \frac{5}{4} = 2.5 \]
And vertically:
\[ 2 \cdot \frac{3}{2} = 3 \]
Closea)
\[ \tan{\theta} = \sqrt{3} \]
\[ \theta = \frac{\pi}{3} \]
\[ 2\theta = \frac{2\pi}{3} \]
Thus:
\[ \cos{2\theta} = -\frac{1}{2} \]
\[ \sin{2\theta} = \frac{\sqrt{3}}{2} \]
So the reflection matrix is:
\[ \mathbf{X} = \left(\begin{array}{cc} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{array}\right) \]
Now for the rotation:
\[ \theta = \frac{\pi}{4} \]
\[ \cos{\frac{\pi}{4}} = \sin{\frac{\pi}{4}} = \frac{\sqrt{2}}{2} \]
So the rotation matrix is:
\[ \mathbf{R} = \left(\begin{array}{cc} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{array}\right) \]
So the final matrix is:
\[ \mathbf{XR} = \left(\begin{array}{cc} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{array}\right) \cdot \left(\begin{array}{cc} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{array}\right) = \left(\begin{array}{cc} \frac{-\sqrt{2}+\sqrt{6}}{4} & \frac{\sqrt{2}+\sqrt{6}}{4} \\ \frac{\sqrt{2}+\sqrt{6}}{4} & \frac{\sqrt{2}-\sqrt{6}}{4} \end{array}\right) \]
b) Reflection on the y-axis:
\[ \left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right) \]
Reflection on the x-axis:
\[ \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \]
So the final matrix is:
\[ \left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right) \cdot \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) = \left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right) \]
Closea) Enlargement by factor 2 has matrix:
\[ \mathbf{E} = \left(\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array}\right) \]
So the equation is:
\[ \mathbf{x}' = \left(\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array}\right) \mathbf{x} + \left(\begin{array}{c} -3 \\ 5 \end{array}\right) \]
b) Here we need to be very careful with the order we do things in, due to the brackets involved. The transformation is as follows:
\[ \mathbf{x}' = \left(\begin{array}{cc} 1 & 0 \\ 0 & 3 \end{array}\right) \left[\mathbf{x} + \left(\begin{array}{c} 1 \\ 2 \end{array}\right) \right] \]
Which expands to:
\[ = \left(\begin{array}{cc} 1 & 0 \\ 0 & 3 \end{array}\right) \mathbf{x} + \left(\begin{array}{cc} 1 & 0 \\ 0 & 3 \end{array}\right) \left(\begin{array}{c} 1 \\ 2 \end{array}\right) \]
Thus:
\[ = \left(\begin{array}{cc} 1 & 0 \\ 0 & 3 \end{array}\right) \mathbf{x} + \left(\begin{array}{c} 1 \\ 6 \end{array}\right) \]
Closea) Horizontally stretched by a factor of 5, vertically stretched by a factor of 4.
b) (i) Sides AB and CD are parallel, and have the same magnitude, and so are AD and BC.
b) (ii) \( \text{Area} = |AB|^2 = (-2 + 6)^2 + (5 - 2)^2 = 25 \)
c) (i) The coordinates after transformation are:
\[ A' = (-36, 8), \quad B' = \left(\begin{array}{cc} 6 & 0 \\ 0 & 4 \end{array}\right) \cdot \left(\begin{array}{c} -2 \\ 5 \end{array}\right) = \left(\begin{array}{c} -12 \\ 20 \end{array}\right) \]
Similarly:
\[ C' = (-30, 36), \quad D' = (-54, 24) \]
c) (ii) We need to check whether the sides are parallel to one another. The gradient of \(A'B'\) is:
\[ \frac{20 - 8}{-12 + 36} = \frac{12}{24} = 0.5 \]
The gradient of \(C'D'\) is:
\[ \frac{36 - 24}{-30 + 54} = 0.5 \]
The gradient of \(B'C'\) is:
\[ \frac{36 - 20}{-30 + 12} = -\frac{16}{18} \]
The gradient of \(A'D'\) is:
\[ \frac{24 - 8}{-54 + 36} = -\frac{16}{18} \]
Thus, these two pairs of sides are parallel and not perpendicular to one another (dot product not 0), so we have a parallelogram.
c) (iii) \( \text{Area} = \det(\textbf{Y}) \cdot \text{area of square} = 24 \cdot 25 = 600 \)
Closea) Horizontal stretch with scale factor 2, and vertical stretch with scale factor 3.
a) (i)
\[ A' = \mathbf{X} \cdot A = \left(\begin{array}{cc} -12 \\ 0 \end{array}\right), \quad B' = \mathbf{X} \cdot B = \left(\begin{array}{cc} 0 \\ 12 \end{array}\right), \quad O' = \mathbf{X} \cdot O = \left(\begin{array}{cc} 0 \\ 0 \end{array}\right) \]
b) The area of triangle AOB is calculated as:
\[ A = \frac{1}{2} \cdot 6 \cdot 4 = 12 \]
b) (i)
\[ \det \mathbf{X} = 6 \quad \Rightarrow \quad A_{\text{new}} = 6 \cdot 12 = 72 \quad \text{or} \quad A_{\text{new}} = \frac{1}{2} \cdot 12 \cdot 12 = 72 \]
c) \( \mathbf{R} = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right) \)
c) (i) After rotation, the vertices are:
\[ O''(0,0), \quad A''(0,6), \quad B''(4,0) \]
d) (i) \( \mathbf{P} = \left(\begin{array}{cc} 0 & 2 \\ -3 & 0 \end{array}\right) \)
d) (ii) First, it applies translations from matrix \(\mathbf{X}\), and then it rotates the figure clockwise by 90 degrees.
Close