a)
\[ (4 - 8x)^2 = (4)^2 - 2 \times 4 \times 8x + (8x)^2 = 16 - 64x + 64x^2 \]
This confirms the given expression.
b) To find the value of \(\int_{0}^{3} (4 - 8x)^2 \, dx\), we use the result from part (a), where:
\[ (4 - 8x)^2 = 16 - 64x + 64x^2 \]
Thus, the integral becomes:
\[ \int_{0}^{3} (16 - 64x + 64x^2) \, dx \]
\[ \int_{0}^{3} (16 - 64x + 64x^2) = 16x - 32x^2 + \frac{64}{3}x^3 \, dx \]
\[ (16 - 32(3)^2 + \frac{64}{3}3^3) - 16 = 336 \]
a) To find the equation of the tangent to \( f(x) \) at point \( Q(2, 14) \), we first need to determine the gradient of the function at \( x = 2 \).
\[ f'(2) = 9(2)^2 - 4(2) + 1 \]
\[ f'(2) = 36 - 8 + 1 = 29 \]
So, the gradient of the tangent at \( x = 2 \) is 29.
Using the point-slope form of the equation of the tangent line:
\[ y - 14 = 29(x - 2) \]
\[ y - 14 = 29x - 58 \]
\[ y = 29x - 44 \]
Thus, the equation of the tangent line at point \( Q \) is \( y = 29x - 44 \).
b) To find the equation of \( f(x) \), we integrate \( f'(x) \).
\[ f(x) = 3x^3 - 2x^2 + x + C \]
To find the constant \( C \), use the point \( Q(2, 14) \):
\[ 14 = 3(2)^3 - 2(2)^2 + 2 + C \]
\[ C = 14 - 18 = -4 \]
So, the equation of \( f(x) \) is:
\[ f(x) = 3x^3 - 2x^2 + x - 4 \]
a)
\[ a = \int_{2}^{3} (2x^2 - 3x - 2) \, dx \]
b)
\[ \int (2x^2 - 3x - 2) \, dx = \frac{2x^3}{3} - \frac{3x^2}{2} - 2x \]
Evaluating this from \( x = 2 \) to \( x = 3 \):
Substitute \( x = 3 \):
\[ \frac{2(3)^3}{3} - \frac{3(3)^2}{2} - 2(3) = \frac{54}{3} - \frac{27}{2} - 6 \]
\[ = 18 - 13.5 - 6 = -1.5 \]
Substitute \( x = 2 \):
\[ \frac{2(2)^3}{3} - \frac{3(2)^2}{2} - 2(2) = \frac{16}{3} - \frac{12}{2} - 4 \]
\[ = \frac{16}{3} - 6 - 4 = \frac{16}{3} - 10 = -\frac{14}{3} \]
The area \( a \) is:
\[ a = \left( -1.5 \right) - \left( -\frac{14}{3} \right) = -1.5 + \frac{14}{3} = \frac{19}{6} \]
So the area \( a \) is:
\[ a = \frac{19}{6} \]
c) To find the value of \( c \), which is measured as \( c = \frac{b}{2a} \), we first need to find \( b \). To do that, we need to find the top side of the rectangle which it forms, which can be done by finding \( f(3) \)
\[ f(3) = 7 * 1 = 7 \]
So the graph of this function looks as follows:
So, we have that:
\[ b = 7 - \frac{19}{6} = \frac{23}{6} \]
So, finally we have that
\[ c = \frac{b}{2a} = \frac{\frac{23}{6}}{\frac{19}{6}} = \frac{23}{19} \]
Closea) To find the equation of \( f(x) \), we integrate the given gradient function \( f'(x) = kx + 5 \):
\[f'(x) = kx + 5\]
Integrating \( f'(x) \) with respect to \( x \):
\[f(x) = \int (kx + 5) \, dx = \frac{kx^2}{2} + 5x + C\]
Given that \( f(x) \) cuts the y-axis at \( y = 2 \), we know \( f(0) = 2 \):
\[f(0) = \frac{k \cdot 0^2}{2} + 5 \cdot 0 + C = 2 \implies C = 2\]
So, the equation becomes:
\[f(x) = \frac{kx^2}{2} + 5x + 2\]
Given that \( f(x) \) cuts the x-axis at \( x = 2 \), we know \( f(2) = 0 \):
\[f(2) = \frac{k \cdot 2^2}{2} + 5 \cdot 2 + 2 = 0 \implies 2k + 10 + 2 = 0 \implies 2k + 12 = 0 \implies k = -6\]
Thus, the function \( f(x) \) is:
\[f(x) = \frac{-6x^2}{2} + 5x + 2 = -3x^2 + 5x + 2\]
b) This can be easily found in the GDC:
\[\text{Area} = \int_{0}^{2} (-3x^2 + 5x + 2) \, dx = 6\]
c) To find the tangent at \( x = 1 \), we need the slope at \( x = 1 \). The slope is given by \( f'(x) \):
\[f'(x) = kx + 5 = -6x + 5\]
Evaluating the slope at \( x = 1 \):
\[f'(1) = -6 \cdot 1 + 5 = -1\]
The slope of the tangent line at \( x = 1 \) is \( -1 \).
Next, we find the y-coordinate at \( x = 1 \):
\[f(1) = -3(1)^2 + 5 \cdot 1 + 2 = -3 + 5 + 2 = 4\]
So the point of tangency is \( (1, 4) \).
Using the point-slope form of the equation of a line:
\[y - y_1 = m(x - x_1)\]
Where \( m \) is the slope and \( (x_1, y_1) \) is the point of tangency:
\[y - 4 = -1(x - 1)\]
Simplifying:
\[y - 4 = -x + 1 \implies y = -x + 5\]
Closea) To find the equation of the tangent to \( f(x) = -2x^3 + 6x^2 \) at \( x = 3 \) we have to first find the derivative:
\[ f(x) = -2x^3 + 6x^2 \]
\[ f'(x) = \frac{d}{dx}(-2x^3 + 6x^2) = -6x^2 + 12x \]
\[ f'(3) = -6(3)^2 + 12(3) = -54 + 36 = -18 \]
So, the slope of the tangent at \( x = 3 \) is \(-18\).
Now, we find the y-coordinate at \( x = 3 \):
\[ f(3) = -2(3)^3 + 6(3)^2 = -54 + 54 = 0 \]
So, the point of tangency is \( (3, 0) \).
Then, we find the tangent line:
\[ y - y_1 = m(x - x_1) \]
Substituting \( m = -18 \), \( x_1 = 3 \), and \( y_1 = 0 \):
\[ y - 0 = -18(x - 3) \implies y = -18x + 54 \]
b) To find the shaded area we first have to find the x-intercepts:
\[ f(x) = -2x^3 + 6x^2 = x^2(-2x + 6) \]
\[ x^2(-2x + 6) = 0\]
\[ x = 0, x = 3\]
Now, we can plug the function into the GDC and find the area:
So, the area is equal to 13.5.
c)
\[ \text{Area of triangle} = \frac{1}{2} \times \text{base} \times \text{height} \]
Given the vertices \( A(1, 0) \), \( B(5, 0) \), and \( C(3, y) \), the base \( AB \) is \( 5 - 1 = 4 \).
\[ \frac{1}{2} \times 4 \times y = 13.5 \]
\[ 2y = 13.5 \implies y = \frac{13.5}{2} = 6.75 \]
The y-coordinate of point \( C \) is \( 6.75 \).
Closea)
\[ \frac{4\sqrt{z} + 20}{\sqrt{z}} = \frac{4\sqrt{z}}{\sqrt{z}} + \frac{20}{\sqrt{z}} \]
We know that \(\frac{4\sqrt{z}}{\sqrt{z}} = 4\) and \(\frac{20}{\sqrt{z}} = 20z^{-\frac{1}{2}}\). Therefore, the expression becomes:
\[ 4 + 20z^{-\frac{1}{2}} \]
This matches the form \( 4 + 20z^p \) where \( p = -\frac{1}{2} \).
b) To find the value of \( \int_{1}^{16} \frac{4\sqrt{z} + 20}{\sqrt{z}} \, dz \), we use the simplified form \( 4 + 20z^{-\frac{1}{2}} \):
\[ \int_{1}^{16} \left( 4 + 20z^{-\frac{1}{2}} \right) \, dz \]
\[ \int_{1}^{16} \left( 4 + 20z^{-\frac{1}{2}} \right) \, dz = \int_{1}^{16} 4 \, dz + \int_{1}^{16} 20z^{-\frac{1}{2}} \, dz \]
Evaluating the integrals:
\[ \int_{1}^{16} 4 \, dz = 4z \bigg|_{1}^{16} = 4(16) - 4(1) = 64 - 4 = 60 \]
\[ \int_{1}^{16} 20z^{-\frac{1}{2}} \, dz = 20 \left( 2z^{\frac{1}{2}} \right) \bigg|_{1}^{16} = 40z^{\frac{1}{2}} \bigg|_{1}^{16} \]
Evaluating this at the bounds:
\[ 40z^{\frac{1}{2}} \bigg|_{1}^{16} = 40(16^{\frac{1}{2}}) - 40(1^{\frac{1}{2}}) = 40(4) - 40(1) = 160 - 40 = 120 \]
Adding the results of both integrals:
\[ 60 + 120 = 180 \]
Thus, the value of the integral is \( 180 \).
Closea) As it can be seen, we have \( -x^2 \) for \( f(x) \), meaning that i's concave down, so it will be green. For \( g(x) \) we have \( x^2 \), so it is concave up, which means that it is the red curve.
b) To find the points of intersection of the functions, we set \( f(x) = g(x) \):
\[ -x^2 + 3x - 11 = x^2 - 5x - 5 \]
\[ -x^2 + 3x - 11 - x^2 + 5x + 5 = 0 \]
\[ -2x^2 + 8x - 6 = 0 \]
\[ x^2 - 4x + 3 = 0 \]
\[ (x - 1)(x - 3) = 0 \]
So, the solutions are:
\[ x = 1 \quad \text{and} \quad x = 3 \]
Since \( a > b \):
\[ a = 3 \quad \text{and} \quad b = 1 \]
c) To find the area enclosed by the two functions between \( x = 1 \) and \( x = 3 \), we integrate the difference \( f(x) - g(x) \) from 1 to 3. We start with \( f(x) \) as this is the function on top:
\[ \text{Area} = \int_{1}^{3} [f(x) - g(x)] \, dx \]
Substitute \( f(x) \) and \( g(x) \):
\[ f(x) = -x^2 + 3x - 11 \]
\[ g(x) = x^2 - 5x - 5 \]
\[ f(x) - g(x) = (-x^2 + 3x - 11) - (x^2 - 5x - 5) \]
\[ f(x) - g(x) = -2x^2 + 8x - 6 \]
Now, integrate \( -2x^2 + 8x - 6 \) from 1 to 3:
\[ \int_{1}^{3} (-2x^2 + 8x - 6) \, dx \]
\[ \int (-2x^2 + 8x - 6) \, dx = -\frac{2x^3}{3} + 4x^2 - 6x \]
Evaluate this from 1 to 3:
\[ \left[ -\frac{2x^3}{3} + 4x^2 - 6x \right]_{1}^{3} \]
First, evaluate at \( x = 3 \):
\[ -\frac{2(3)^3}{3} + 4(3)^2 - 6(3) = -\frac{54}{3} + 36 - 18 = -18 + 36 - 18 = 0 \]
Next, evaluate at \( x = 1 \):
\[ -\frac{2(1)^3}{3} + 4(1)^2 - 6(1) = -\frac{2}{3} + 4 - 6 = -\frac{2}{3} - 2 = -\frac{2 + 6}{3} = -\frac{8}{3} \]
The area is:
\[ 0 - \left( -\frac{8}{3} \right) = \frac{8}{3} \]
Thus, the area enclosed by the two functions is \( \frac{8}{3} \) square units.
CloseTo solve the integral, we use the trigonometric identity:
\[ \cos^2 \theta = \frac{1 + \cos(2\theta)}{2} \]
Applying this identity with \( \theta = \frac{x}{4} \):
\[ \cos^2\left(\frac{x}{4}\right) = \frac{1 + \cos\left(\frac{x}{2}\right)}{2} \]
Substitute this into the integral:
\[ \int_{0}^{2\pi} \cos^2\left(\frac{x}{4}\right) \, dx = \int_{0}^{2\pi} \frac{1 + \cos\left(\frac{x}{2}\right)}{2} \, dx \]
Split this into two separate integrals:
\[ \int_{0}^{2\pi} \frac{1 + \cos\left(\frac{x}{2}\right)}{2} \, dx = \frac{1}{2} \int_{0}^{2\pi} 1 \, dx + \frac{1}{2} \int_{0}^{2\pi} \cos\left(\frac{x}{2}\right) \, dx \]
Evaluate each integral separately:
1. Integral of 1:
\[ \frac{1}{2} \int_{0}^{2\pi} 1 \, dx = \frac{1}{2} \left[x\right]_{0}^{2\pi} = \frac{1}{2} \cdot (2\pi - 0) = \pi \]
2. Integral of \( \cos\left(\frac{x}{2}\right) \):
Use substitution \( u = \frac{x}{2} \), hence \( du = \frac{1}{2} dx \) or \( dx = 2 \, du \). Adjust the limits:
When \( x = 0 \), \( u = 0 \). When \( x = 2\pi \), \( u = \pi \).
\[ \frac{1}{2} \int_{0}^{2\pi} \cos\left(\frac{x}{2}\right) \, dx = \frac{1}{2} \int_{0}^{\pi} \cos(u) \cdot 2 \, du = \int_{0}^{\pi} \cos(u) \, du \]
Integrate:
\[ \int_{0}^{\pi} \cos(u) \, du = \sin(u) \Big|_{0}^{\pi} = \sin(\pi) - \sin(0) = 0 - 0 = 0 \]
Combine the results:
\[ \frac{1}{2} \int_{0}^{2\pi} 1 \, dx + \frac{1}{2} \int_{0}^{2\pi} \cos\left(\frac{x}{2}\right) \, dx = \pi + 0 = \pi \]
Thus, the value of the integral is:
\[ \int_{0}^{2\pi} \cos^2\left(\frac{x}{4}\right) \, dx = \pi \]
CloseTo find the function \( f(x) \), we need to integrate \( f'(x) \):
\[ f(x) = \int \frac{5x}{7x^2 + 3} \, dx \]
Substitute \( u = 7x^2 + 3 \):
\[ du = 14x \, dx \text{ or } dx = \frac{du}{14x} \]
Substitute into the integral:
\[ \int \frac{5x}{7x^2 + 3} \, dx = \int \frac{5x}{u} \times \frac{du}{14x} \]
\[ = \frac{5}{14} \int \frac{du}{u} \]
\[ = \frac{5}{14} \ln|u| + C \]
Substitute back \( u = 7x^2 + 3 \):
\[ f(x) = \frac{5}{14} \ln|7x^2 + 3| + C \]
To find \( C \), use the point \( Q(1, 3) \):
\[ 3 = \frac{5}{14} \ln|7 \times 1^2 + 3| + C \]
\[ 3 = \frac{5}{14} \ln|10| + C \]
Solving for \( C \):
\[ C = 3 - \frac{5}{14} \ln 10 \]
The final equation for \( f(x) \) is:
\[ f(x) = \frac{5}{14} \ln \left|\frac{7x^2 + 3}{10}\right| + 3 \]
Closea)
\[ f(x) = -4\cos^2(x) - 2\sin^2(x) + 2 \]
Rewrite \( f(x) \) using the identity \( \sin^2(x) = 1 - \cos^2(x) \):
\[ f(x) = -4\cos^2(x) - 2(1 - \cos^2(x)) + 2 \]
\[ f(x) = -4\cos^2(x) - 2 + 2\cos^2(x) + 2 \]
\[ f(x) = -2\cos^2(x) \]
Set \( f(x) = 0 \):
\[ -2\cos^2(x) = 0 \]
\[ \cos^2(x) = 0 \]
\[ \cos(x) = 0 \]
The cosine function is zero at \( x = \frac{\pi}{2} \) within the interval \( 0 \leq x \leq \pi \). Therefore, the root is:
\[ x = \frac{\pi}{2} \]
b)
\[ f(x) = -2\cos^2(x) \]
Using the chain rule:
\[ \frac{d}{dx}[\cos^2(x)] = 2\cos(x)(-\sin(x)) = -2\cos(x)\sin(x) \]
Thus:
\[ f'(x) = -2 \times (-2\cos(x)\sin(x)) = 4\cos(x)\sin(x) \]
\[ f'(x) = 2\sin(2x) \]
So, \( a = 2 \) and \( b = 2 \).
c)
\[ 2\sin(2x) = 0 \]
\[ \sin(2x) = 0 \]
The general solution for \( \sin(2x) = 0 \) is:
\[ 2x = n\pi \text{ for integer } n \]
\[ x = \frac{n\pi}{2} \]
Within the interval \( 0 \leq x \leq \pi \), the values are \( x = 0 \) and \( x = \frac{\pi}{2} \).
We substitute these x-values into \( f(x) \) to find the corresponding y-values:
For \( x = 0 \):
\[ f(0) = -2\cos^2(0) = -2 \cdot 1^2 = -2 \]
For \( x = \frac{\pi}{2} \):
\[ f\left(\frac{\pi}{2}\right) = -2\cos^2\left(\frac{\pi}{2}\right) = -2 \cdot 0^2 = 0 \]
So, the coordinates are: \( \left(0, -2\right), \ \left(\frac{\pi}{2}, 0\right) \)
d) We use what we found previously:
\[ -4\cos^2(x) - 2\sin^2(x) + 2= -2\cos^2(x) \]
Rewrite \( \cos^2(x) \) using \( \cos^2(x) = \frac{1 + \cos(2x)}{2} \):
\[ \int_{0}^{\pi} -2 \left(\frac{1 + \cos(2x)}{2}\right) \, dx = \int_{0}^{\pi} -1 - \cos(2x) \, dx \]
Integrate term by term:
\[ \int_{0}^{\pi} -1 \, dx - \int_{0}^{\pi} \cos(2x) \, dx \]
Using the substitution \( u = 2x \), \( du = 2 \, dx \), so \( dx = \frac{du}{2} \):
\[ \int_{0}^{\pi} \cos(2x) \, dx = \frac{1}{2} \int_{0}^{2\pi} \cos(u) \, du \]
\[ \int \cos(u) \, du = \sin(u) \]
\[ \frac{1}{2} [\sin(u)]_{0}^{2\pi} = \frac{1}{2} [\sin(2\pi) - \sin(0)] = 0 \]
So:
\[ \int_{0}^{\pi} -1 \, dx = -x \Big|_{0}^{\pi} = -\pi \]
\[ \int_{0}^{\pi} \cos(2x) \, dx = 0 \]
Thus:
\[ \int_{0}^{\pi} -2\cos^2(x) \, dx = -\pi \]
Closea) To find the inverse function \( g^{-1}(x) \), we start with the function \( g(x) = \sqrt{3x + 4} \). Set \( y = \sqrt{3x + 4} \) and solve for \( x \):
\[ y = \sqrt{3x + 4} \]
Square both sides to eliminate the square root:
\[ y^2 = 3x + 4 \]
Rearrange to solve for \( x \):
\[ 3x = y^2 - 4 \]
\[ x = \frac{y^2 - 4}{3} \]
Switch \( x \) and \( y \) to find the inverse function:
\[ g^{-1}(x) = \frac{x^2 - 4}{3} \]
b) To find the point of intersection we can plug both functions into the GDC:
The coordinates of intersection are \( (4, 4) \).
c)
\[ g'(x) = \frac{1}{2}(3x + 4)^{-1/2} \times 3 = \frac{3}{2\sqrt{3x + 4}} \]
d) We first find the derivative of \( g^{-1}(x) \):
\[ g^{-1}(x) = \frac{x^2 - 4}{3} \]
\[ g^{-1}(x)' = \frac{2x}{3} \]
Equalize both derivatives:
\[ \frac{3}{2\sqrt{3x + 4}} = \frac{2x}{3} \]
Now we can plug them both into the GDC as well:
So, the gradients are the same for \( x = 0.874 \)
e) The area enclosed will look like the one presented on the graph below:
To find this area, we calculate the following integral. This can be easily done in the GDC:
\[ \int_{0}^{4} \left( \sqrt{3x + 4} - \frac{x^2 - 4}{3} \right) \, dx \]